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Abstract— Natural acoustic frequency of one dimensional duct 

partitioned with a perforated plate was clarified to come down 

with decreasing an aperture ratio experimentally and 

analytically. In order to clarify the reason, the sound 

propagation experiment was conducted. As a result, it was 

clarified that the smaller the aperture ratio became the longer 

the sound arrival time became. On the other hand, the 

impedance of the perforated plate was studied by Melling and it 

was referred by many researchers. The same analysis was also 

done by Dah-You Maa for a micro-perforated panel. In this 

paper, the relationship among the present analysis, Melling’s 

equation and Dah-You maa’s analysis are discussed. And the 

applicability of the present method will be confirmed. 
 . 

Index Terms— Noise control, Sound and acoustics, Natural 

acoustic frequency, Perforated plate, Transfer matrix method  

 

I. INTRODUCTION  

In an acoustic system like a duct with a perforated plate in 

the middle, I was pretty sure that a natural acoustic frequency 

increased with decreasing aperture ratio of the perforated 

plate. Because the one dimensional acoustic field like the duct 

is divided into two ducts due to the perforated plate [1]. 

However according to a result of the analysis by the 

Transfer Matrix Method with the acoustic impedance derived 

from Melling and the experiment as previously reported, it 

was clarified that the natural acoustic frequency decreased 

with decreasing the aperture ratio of the perforated plate [1].  

To make it clear the acoustic mode was obtained by the 

Transfer Matrix Method and the frequency was calculated by 

the equation f=c/λ after getting the wave length λ from the 

mode shape. These results of the frequencies were in good 

agreement with the experimental ones [2]. Then we 

understood that this phenomenon was due to the decreasing of 

the apparent sound speed based on the time delay when the 

wave passed through the holes of the perforated plate [2]-[4].  

The experiment as shown in Figure 4 was carried out to 

make this fact clearer and the apparent sound speed was 

confirmed to be decreasing [5].  

On the other hand, the impedance of the perforated plate  

was studied by Melling [6] and was cited by many 

researchers. And Dah-You Maa’s has also studied the same 
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analysis as Melling for the micro-perforated panel [7]. Then in 

this study, I will make it clear why the analytical result by 

Transfer Matrix Method is in agreement with the experimental 

one in an integrated manner by comparing Melling’s equation 

and Dah-you Maa’s equation and the relationship between 

them will be discussed. 

II. EXPERIMENTAL APPARATUS AND METHOD 

Figure 1 shows the experimental setup for obtaining the 

natural acoustic frequency of the duct. The perforated plate is 

inserted at 100 mm from the right end of the one dimensional 

duct which has 434 mm in total length. The experimental 

parameters are the aperture ratio of the perforated plate. The 

aperture ratios are 1 %, 2 %. 4 %, 8 %, 16 % and 32 %. The 

perforated plate is made of the steel with thickness 2.3 mm and 

has many holes with the diameter of 3 mm. The sound source 

is a speaker and the sound pressure level is measured by the 

microphone set at 30mm from the left end of the duct. The 

pressure signal is frequency analyzed by the FFT analyzer.  
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Fig.1 Experimental setup 

III. ANALYTICAL MODEL AND METHOD 

A. Analytical Model and Method 

Figure 2 shows the analytical model. The numbering is 

performed as shown in the figure 2 and the state vector at each 

position is described as . The relation between two 

state vectors of both ends can be written by Eq. (1). Where Zi

＝ρc/Si,  Si is the cross sectional area of each duct element. 

And Aij are the results of multiplication of three matrixes. The 

aperture ratio φ is defined by S3/S1. Where S3 is calculated by 

πd
2
/4・N. Where d is a diameter of hole and N is a number of 
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holes. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Analytical model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Comparison between analytical and experimental results 

of natural acoustic frequency 

 

 

 

 

 

 

 

 

 

Fig.4 Experiment of obtaining apparent sound speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Pressure and particle velocity modes of duct (1
st
 mode) 
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As the both ends of the duct are closed the boundary condition 

is given as follows. 

0,0 41  UU                                     (3)  

Therefore 

1210 PA                                   (4)  

The characteristic equation becomes as follows. 

021 A                                                                        (5) 

Indicating this equation in concrete finally, 
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B. Analytical Results and Comparing with Experiment 

   Figure 3 shows the comparison between analytical results 

and experimental results of the natural acoustic frequency of 

the 1st and the 2nd modes. “Anal” and “Exp.” in this figure 

mean the analytical value and the experimental value, 

respectively. The analytical values are in good agreement with 

the experimental ones. As can be seen in figure 3 the natural 

acoustic frequency decreases with decreasing the aperture 

ratio. 

 

IV. REASON WHY NATURAL ACOUSTIC FREQUENCY 

DECREASES WITH DECREASING APERTURE RATIO 

   I have presumed that the sound wave reached the end of the 

duct in retard due to the time delay when the sound wave 

passed through the hole of the perforated plate. To confirm 

the presumption the experiment was conducted as shown in 

the figure 4. The time difference Δ t(s) between two 

microphone’s positions can be measured. The distance of two 

sound measuring points is 585mm. So the apparent sound 

speed can be calculated by 0.585/Δt. The natural acoustic 

frequency can be calculated by fn=ca/2L. Where ca is the 
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apparent sound speed and L is the duct length. The natural 

acoustic frequency coincides with that of the experiment. The 

presumption mentioned above has therefore been made clear. 

Moreover, I examined the fact by using acoustical mode of 

the duct. Figure 5 shows the results of the modal analysis. 

Upper and lower of figure5 are the sound pressure and the 

particle velocity modes of the 1st mode, respectively. As can 

be seen from the lower of figure5 the wave length increases 

with the aperture ratio being small. This means the natural 

acoustic frequency decreases with decreasing the aperture 

ratio. 

 

V. COMPARISON BETWEEN ANALYSES BY MELLING 

AND BY DAH-YOU MAA 

When I have been studying the impedance of the perforated 

plate two references can be attracted attention. One is a paper 

by Melling who wrote it in 1973 and the other is a paper by 

Dah-You Maa in 1987. These papers are closely similar. So I 

will compare these papers below. 

 

A. Melling’s Analysis 

Figure 6 shows the theoretical model of the hole of the 

perforated plate and the figure 7 shows the detail of the figure 

6.  

 
 

Fig.6 Coordinate system of theoretical model for viscous 

effects in tube 

 

 
 

Fig.7 Air in hole 

 
Fig.8 Viscous force 

The equation of motion of the air in the hole is given by 

Melling as follows. This equation was derived based on the 

Crandall’s equation [9]. 
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Where ϕ is the pressure gradient along with the tube axis. If 

the tube length is l, the pressure gradient ϕ is given by 

lp / . The particle velocity   is the function of only r and 

this equation is rewritten as follows (See APPENDIX A). 
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Where  /2 jks  and ρ, ω, μ are air density , angular 

frequency , viscosity, respectively. The solution of this 

equation is as follows. 
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(See APPENDIX B) 

J0 is the zero order Bessel function of the first kind. 

The coefficient A is determined under the boundary 

condition of the velocity being 0 at r=r0 
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Finally the mean value is obtained by integrating )(r  
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(See APPENDIX C) 

 

In this regard, the formula of the Bessel function : 

)()( 10 xxJdxxxJ   is used in deriving the equation (11)[8]. 

The amount of [  ] in the equation (11) is the function of the 

velocity profile and J0 and J1 are the zero order and one order 

Bessel functions of the first kind, respectively. The pressure 

difference at both ends of the tube becomes as follows. 


l
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0

                     (12) 

The impedance per unit cross sectional area of the tube can 

be obtained by use of this equation with the equation (11) 

which means the mean velocity at the same time. 
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 /2 jks  , 
sk  is the wave number of the viscous Stokes 

wave and 
s  is the associated wave length which can be 

written as follows. 

 /2s
, where 2/1)2/(    

In the case of air, 
s  =0.04(0.044)cm at 1000Hz as μ =2×10

-4
 

poise(1.83 × 10
-5

 Pa ・ s). For a wall of high thermal 

conductivity, the effective value of the viscosity coefficient is 
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μ =4×10
-4

 poise (3.66×10
-5

 Pa・s). Thus the Stokes wave 

length in this case is greater by a factor of √2. 

 (a) )/(2 00 ss rrk   ):(0.1 0

2

0 cmrfr   in the case of 

air. This is written in the reference [6]. It is however better to 

describe |ksr0|<1 and r0
2
f <0.025 (r0:cm), when μ =1.83×10

-5
 

Pa・s or |ksr0|<1 and r0
2 

f<0.05 (r0:cm), when μ =3.66×10
-5

 

Pa・s 

By using first two terms of the series expansion of the 

Bessel function the following equation can be obtained. 
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(See APPENDIX D) 

Equation 2

0/8 rl  is known as the Poiseuille’ law which means 

the resistance to the laminar flow of the viscos flow run in the 

small tube. 

The imaginary part of the impedance 3/4 l   has the 

total effective mass 3/4 l  and this value is larger than the 

real mass of the tube part. This added mass is the direct result 

of the effect of the viscosity on the velocity profile while the 

viscos modulus being independent explicitly. 

 (b) 100 rks ):(0.5 0
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-5
 

Pa・s or |ksr0|>10 and r0
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-5
 Pa

・s. 

This time the suitable approximation of the ratio of the Bessel 

functions is  
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Then, Equation (14) becomes as follows. 
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(See APPENDIX E) 

The real part of the equation (17) is depend on the 

frequency. This equation to the resistance was first determined 

by Helmholtz [6]. This additional attached mass, which is  

resulting from combined the viscosity and the inertia in the 

tube, is also dependent on the frequency. 

Equation (15) and equation (17) mentioned above are the 

impedances for one hole, the impedance for total holes is 

described as follows under the assumption of no interference.  
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Where σ, S are the area of one hole and the area of total holes, 

respectively. P is the porosity. 

 

B. Dah You Maa’s Analysis 

Next, I will explain the result of Dah-You Maa. He derived 

the impedance for the micro-perforated panel by using the 

Crandall’s equation for the orifice [9]. This is the same as the 

Melling’s result. I will show the derivation of the equation of 

the impedance of the orifice by Dah-You Maa. 

The equation of motion is given as follows. 
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Where ρ is the air density, μ is the viscosity, u is the particle 

velocity, r1 is the radius vector. The solution of u is assumed 

to be the sin function of the time, thus . To take into 

account tl  , the equation (19) coincides with the equation 

(7) which was derived by Melling. And imposing the boundary 

condition that the velocity is 0 at the tube wall, u is obtained as 

follows as the function of r1. 
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Where r0 is the radius of the tube, J0 is the zero order Bessel 

function of the first kind. This equation coincides with the 

equation (10). The mean velocity of the tube cross sectional 

area is known from the equation (20) and the characteristic  

impedance of the hole becomes as follows. 
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Where  , J1 is the first order Bessel function of 

the first kind. x  is the ratio of the hole radius to the boundary 

layer thickness. 

Calculating the impedance from the equation (21), The 

following equation can be obtained.  
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Rewriting the equation (23)  
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This equation coincides with the equation (17) by Melling. 

Obtaining the ratio of the resistance R to the reactance 
M   
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(See APPENDIX F) 

That is to say, the value of the ratio is very large for x<1 and 

small for x>10. This fact is needed for the perforated plate 

with micro holes. 

VI   CONCLUSION 

In order to clarify why the analytical result of the natural 

acoustic frequency for the duct with the perforated plate in the 

middle by Transfer Matrix Method with Melling’s impedance 

is in good agreement with the experimental one in an 

integrated manner, Melling’s equation and Dah-you Maa’s 

equation are compared and discussed. As a result, the 

following conclusions could be obtained. 

1) It was clarified that the theory by Dah-You Maa was the 

same as one by Melling even though Dah-You Maa had 

investigated 15 years later than Melling. Because both 

theories were constructed based on the Crandall theory.  

2) As both theories reached the same result, I thought that 

these results were confirmed to be correct and useful. I will 

recommend well these theories not only to apply for the 

natural acoustic frequency but also for acoustic damping in 

investigations of the perforated plate. 
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3) The applicability of Melling’s theory should be modified 

that Equation (15) for |ksr0|<1 and r0
2
f<0.025, Equation 

(17) for |ksr0|>10 and r0
2
f>2.5, when μ=1.83×10

-5
 Pa・s. 

On the other hand Equation (15) for |ksr0|<1 and r0
2
f<0.05, 

Equation (17) for |ksr0|>10 and r0
2
f>5, when μ=3.66×10

-5
 

Pa・s. 
 

APPENDIX A 

Deriving Equation of Motion [Equation (8)] 
 

 
Figure A1 Analytical model of ring shaped 

 

Considering air of ring shaped as shown in the figure A1 at a 

constant distance from the center axis of the cylinder. Air 

volume of ring part can be written as follows. 

                                                            (A-1) 

Where ρis the air density, r is the radius of the ring, dr is the 

thickness of the radial direction, dx is the thickness of the axial 

direction. 

The force acting on the air of the ring shaped can be given 

as follows as the pressure gradient isφ. 

                                                            (A-2) 

The shearing force due to the viscosity can be written by the  

next equation by multiplying the area. 

                                           (A-3) 

And the force acting on the outer surface is given as follows. 

    

                         (A-4) 

Then the force due to the viscosity acting on the ring part 

becomes  

              (A-5) 

From above equations, the equation of motion of the air of the 

ring shaped becomes 

 
   (A-6) 

Dividing both sides by 2πrdrdx 

Copyediting this equation, 

                                  (A-7) 

Putting 

 
The equation (A-7) becomes the next equation. 
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APPENDIX B 

Solution of Equation (8) 

Equation (8) is rewritten here. 
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If the right hand term of Equation (A-9) is put zero, this 

equation is the differential equation of Bessel. So the general 

solution can be described as follows. 

 

 

Where J0 and Y0 are Bessel functions of the first and the second 

kind, respectively. A and B are constant. As Y0(0) is infinity and  

(0) is finite B must be zero in this case. And Equation (A-9) 

has  as the special solution the general solution of 

the equation (A-8) can be written as follows. 
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APPENDIX C 

Calculation of mean value 

 

 

 
                            (A-11) 

First term becomes as follows after calculation 

  
(A-12) 

Second term becomes as follows by using the relation between 

J0 and J1. 

                                           (A-13) 
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                                                       (A-14) 

Finally the mean velocity becomes 

                                             (A-15) 

 

 APPENDIX D 

Deriving of Impedance z’ 

Consider the impedance of hole 

                              (A-16) 
Rewriting Eq.(A-16) by using   /2 jks   

                                                (A-17) 

Consider the approximation of Eq.(A-17) 

Describing the Bessel function of the first kind by using the 

series. 

                               (A-18) 

The zero order and the first order Bessel functions of the first 

kind can therefore be written as follows, respectively. 

 

                          (A-19) 

                                     (A-20) 

Here consider the next equation. 

                                            (A-21) 

Substituting Eq.(A-19) and (A-20) into Eq.(A-21) and 

organizing 

 

(A-22) 

Here consider from zero order to second order terms in both 

the numerator and the denominator. 

                                   (A-23) 

Now describing this equation the next equation by using the 

constant A, B and C 

                         (A-24) 

 

Determining A and B from Equation (A-24) 

                                   (A-25) 

Consequently in the case of  

                                             (A-26) 

 

The next equation can be obtained in the case of ksr0  being 

very small. 

                                              (A-26) 

 

APPENDIX E 

Next consider the case of ksr0 being large. 

We can rewrite Eq.(A-17) by deforming it 

        

           (A-27) 

 

From the characteristics of Bessel function the next formula 

holds in the case of x→∞ 

                   (A-28) 

Therefore Eq.(A-27) becomes as follows in the case of ksr0 

being large 
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             (A-29)  

Here neglecting more second order terms the following 

equation can be obtained. 

   
(A-30) 

APPENDIX F 

Deriving Eq.(25) 

In the case of x<1 
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                         (A-31) 

In the case of x>10 
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